Syndicate content

Large Portion of Bactrian Camel Genome Sequenced

By sequencing over 50% of the genome of a Bactrian camel, researchers at the Vienna’s University of Veterinary Medicine have made a significant contribution to population genetic research on camels. The study has laid the foundation for future scientific work on these enigmatic desert animals. A blood sample from a single Bactrian camel with the evocative name of "Mozart" (Mozart himself is shown in a reflective pose at left--photo by Thomas Lipp) provided the genetic raw material for the work, which was undertaken by Dr. Pamela Burger and her colleague Dr. Nicola Palmieri at the Institute of Population Genetics within the University. The report describing the sequencing was published online in an open-access article on March 1, 2013 in the Journal of Heredity. Camels are divided into two species, the one-humped dromedary and the two-humped Bactrian camel. Whether equipped with one or two humps, camels are precious in desert regions throughout the world. Their ability to carry heavy loads over long distances makes them ideally suited for transportation. In addition, camels are able to survive for weeks in hostile environments without food and water. Despite the extremely arid conditions, camels still provide enough milk for human consumption and also have an important role as a source of meat. Camels are specialists when it comes to adapting to the environment and have been characterized as sustainable food producers. Dr. Pamela Burger heads one of the few research groups in Europe that study camel genetics. Dr. Burger and her colleagues are primarily interested in the domestication of camels, which took place around 3,000 to 6,000 years ago. Genetic data provide important clues on the breeding strategies and selection processes that were applied by humans at that time. The DNA code also represents a rich resource for addressing questions on phylogenetic relationships between animals. Dr. Burger is one of the first scientists to sequence large parts of the genome of a Bactrian camel and make it available to the public. Until recently, the genetic code of the camel had not been fully analyzed. Genetic research on these animals was therefore difficult or even impossible. In contrast, the entire genetic information of the human genome was available as long ago as 2003 and the genetic codes of various animals and plants are publicly available, giving researchers access to an enormous set of data. To date, the lack of basic genetic data has severely hampered studies of camel genetics. Dr. Pamela Burger and her team are pioneers in presenting this essential dataset. The scientists were able to find 116,000 so-called SNPs (single nucleotide polymorphisms) in the genetic sequence of the Bactrian camel. SNPs are single base-pair changes within a DNA strand that provide the basis for studying relationships among species and between single animals. The genetic relationship between the Bactrian camel (Camelus bactrianus) and the dromedary (Camelus dromedarius) is close. 85 percent of the genomic sequences expressed in the dromedary can be found in the Bactrian camel. Dr. Burger explains, "Mozart‘s genome provides us with the basis for further comparative research on other camelids such as dromedary, llama and alpaca." [Press release] [Journal of Heredity article]