Syndicate content

Archive - Oct 5, 2018


New Nanopore System Can Detect Multiple Small Molecules in Nanoliter of Biological Fluids Quickly and Simultaneously; May Lay Foundation for Disruptive New Technology for Medical Diagnostics

University of Groningen (Netherlands) scientists, led by Associate Professor of Chemical Biology Giovanni Maglia, have designed a nanopore system that is capable of measuring different metabolites simultaneously in a variety of biological fluids, all in a matter of seconds. The electrical output signal is easily integrated into electronic devices for home diagnostics. The results were published online on October 5, 2018 in Nature Communications. The open-access article is titled “Direct Electrical Quantification of Glucose and Asparagine from Bodily Fluids Using Nanopores.” Measuring many metabolites or drugs in the body is complicated and time-consuming, and real-time monitoring is not usually possible. The ionic currents that pass through individual nanopores are emerging as a promising alternative to standard biochemical analysis. Nanopores are already integrated into portable devices to determine DNA sequences. “But it is basically impossible to use these nanopores to specifically identify small molecules in a complex biological sample,” says Dr. Maglia. A year ago, Dr. Maglia and colleagues demonstrated how to use nanopores to identify the “fingerprints” of proteins and peptides, and even to distinguish polypeptides that differ by one amino acid ( Now, he has adapted this system to identify small molecules in biological fluids. To do so, he used a larger cylindrical-shaped nanopore to which he added substrate-binding proteins. “Bacteria make hundreds of these proteins to bind substrates in order to transport them into the cells. These proteins have specificities that have evolved over billions of years.” Dr. Maglia adapts the binding proteins to fit inside the nanopore. If a protein then binds to its substrate, it changes its conformation.

2018 Chemistry Nobel Awarded for Directed Evolution of Enzymes & Phage Display

On October 3, 2018, The Royal Swedish Academy of Sciences announced that it had decided to award the Nobel Prize in Chemistry 2018 with one half to Dr. Frances H. Arnold (photo), California Institute of Technology, Pasadena, USA, “for the directed evolution of enzymes,” and the other half jointly to George P. Smith, University of Missouri, Columbia, USA, and Sir Gregory P. Winter, MRC Laboratory of Molecular Biology, Cambridge, UK, “for the phage display of peptides and antibodies.” The power of evolution is revealed through the diversity of life. The 2018 Nobel Laureates in Chemistry have taken control of evolution and used it for purposes that bring great benefit to humankind. Enzymes produced through directed evolution are used to manufacture everything from biofuels to pharmaceuticals. Antibodies evolved using a method called phage display can combat autoimmune diseases and, in some cases, cure metastatic cancer. Since the first seeds of life arose approximately 3.7 billion years ago, almost every crevice on Earth has filled with different organisms. Life has spread to hot springs, deep oceans and dry deserts, all because evolution has solved a number of chemical problems. Life’s chemical tools – proteins – have been optimized, changed and renewed, creating incredible diversity. This year’s Nobel Laureates in Chemistry have been inspired by the power of evolution and used the same principles – genetic change and selection – to develop proteins that solve mankind’s chemical problems. One half of this year’s Nobel Prize in Chemistry is awarded to Dr. Arnold. In 1993, she conducted the first directed evolution of enzymes. Since then, she has refined the methods that are now routinely used to develop new catalysts. The uses of Dr.